Computing lines of curvature for implicit surfaces
نویسندگان
چکیده
Article history: Received 13 August 2008 Received in revised form 2 July 2009 Accepted 13 July 2009 Available online 16 July 2009
منابع مشابه
Lines of curvature and umbilical points for implicit surfaces
This paper develops a method to analyze and compute the lines of curvature and their differential geometry defined on implicit surfaces. With our technique, we can explicitly obtain the analytic formulae of the associated geometric attributes of an implicit surface, e.g. torsion of a line of curvature and Gaussian curvature. Additionally, it can be used to directly derive the closed formulae of...
متن کاملCurvature formulas for implicit curves and surfaces
Curvature formulas for implicit curves and surfaces are derived from the classical curvature formulas in Differential Geometry for parametric curves and surfaces. These closed formulas include curvature for implicit planar curves, curvature and torsion for implicit space curves, and mean and Gaussian curvature for implicit surfaces. Some extensions of these curvature formulas to higher dimensio...
متن کاملRepresentation of Dupin cyclides using quaternions
Dupin cyclides are surfaces characterized by the property that all their curvature lines are circles or lines. Spheres, circular cylinders, cones and tori are particular examples. We introduce a bilinear rational Bézier-like formula with quaternion weights for parametrizing principal patches of Dupin cyclides. The proposed construction is not affine invariant but it is Möbius invariant, has low...
متن کاملRidges and Ravines on Implicit Surfaces
Surface creases provide us with important information about the shapes of objects and can be intuitively defined as curves on a surface along which the surface bends sharply. Our mathematical description of such surface creases is based on study of extrema of the principal curvatures along their curvature lines. On a smooth generic surface we define ridges to be the local positive maxima of the...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 26 شماره
صفحات -
تاریخ انتشار 2009